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Introduction

We’re interested in efficiently solving

f (x) = 0
where f : Rn → Rn is nonlinear, C3, and f (x∗) = 0 =⇒ f ′(x∗) is singular. Any such solution
x∗ is called a singular point.
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Why nonlinear?
▶ Nonlinear Integral Equations

Chandrasekhar H-equation

F(H)(µ) := H(µ)−
(

1 − ω

2

∫ 1

0

µH(ν) dν
µ+ ν

)−1
= 0.

▶ Nonlinear Partial Differential Equations
▶ The Wikipedia page titled “List of nonlinear partial differential equations" lists 103 PDEs.
▶ Many of these have an entire Wikipedia page of their own. For example:

Incompressible Navier-Stokes Minimal Surface Equation

∂tu + u · ∇u −∆u +∇p − g = 0 ∇ ·
(

Du/
√

1 + |Du|2
)
= 0

∇ · u = 0
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WhyRn?

Nonlinear Equation Discretize−→ Nonlinear function onRn

Finite elements, finite difference, collocation, quadrature, etc. .

Remark: one may analyze f (x) = 0 where f is a function between Banach spaces by taking
f ′(x) to be the Fréchet derivative. A suitable generalization for the singular problem is to
assume f ′(x) is a Fredholm operator of index zero [DKK83].
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Why Singular Problems?

Figure: A real life bifurcation post earthquake. Bifurcation point are necessarily singular points. Image
taken from December 2020 AMS Notices [BP20].
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A standard nonlinear solver: Newton’s method

xk+1 = xk − f ′(xk)
−1f (xk) (1)

Local quadratic convergence when f ′(x∗) is nonsingular [Ort].

Local linear convergence when f ′(x∗) is singular [DKK83].

x∗
N

x∗

Figure: Left: Domain of convergence for Newton’s method when f ′(x∗) is nonsingular. Right: Example
domain of convergence when f ′(x∗) is singular, and N = null f ′(x∗).
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Improving Newton’s method for singular problems
Richardson extrapolation and overrelaxtion (Griewank, SIAM Review, 1985 [Gri85]) can achieve
arbitrarily fast linear convergence and superlinear convergence respectively if the order of the
root is know or approximately known (bordering is also useful).

An alternative to Newton’s method for singular problems is the Levenberg-Marquardt (LM)
method, which achieves local quadratic convergence [KYF04] if the local error bound holds:

dist
(

xk, f−1(0)
)
≤ C∥f (xk)∥.

In the absence of the local error bound, one may assume f is 2-regular at x∗ along a direction
v ∈ N, i.e., the linear map

Φ(·) := f ′(x∗)(·) + PNf ′′(x∗)(v, ·)

is nonsingular, in which case LM converges linearly in a starlike domain around x∗.
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What about Anderson?
Anderson Acceleration accelerates convergence of linearly converging fixed-point iterations
[PR21], e.g., Newton’s method applied to a singular problem, by improving the rate of
convergence.

Can enlarge domain of convergence (observed, for example, by Pollock and Schwartz in [PS20]).

For singular problems in particular, no knowledge of the order of the root required, it’s
relatively cheap, and is theoretically supported under the assumption of 2-regularity.

It has been shown by Izmailov, Kurennoy, and Solodov in [IKS18] that under modest conditions1

2-regular =⇒ no local error bound

Thus Anderson can recover superlinear convergence when competitors like LM cannot.
1The solution set is Clarke regular, and f is strictly differentiable at solution x∗ with respect to solution set.
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Anderson Acceleration (AA)

There are several forms Anderson acceleration can take, and different authors express different
preferences. Each form is derived from the same starting point.

Consider the problem of computing a fixed point x∗ of the function g : Rn → Rn with the fixed
point iteration xk+1 = g(xk). Define wk+1 = g(xk)− xk as the residual at step k.
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Anderson Acceleration (AA)
Select x0, and set x1 = g(x0). Set an algorithmic depth m ≥ 0, w1 = g(x0)− x0, and k = 1.
Until convergence, do

1. Set mk = min{k,m}.
2. Takeα(k+1)

k−mk
, ..., α

(k+1)
k that solve the

min∑k
j=k−mk

αj=1

∥∥∥∥∥∥
k∑

j=k−mk

αjwj+1

∥∥∥∥∥∥ (2)

3. With damping factor 0 < βk ≤ 1, set

xAA
k+1 =

k∑
j=k−mk

α
(k+1)
j xj + βk

k∑
j=k−mk

α
(k+1)
j wj+1. (3)

4. Set k = k + 1.
Remark: The norm ∥ · ∥ in step 2 is frequently taken to be the 2-norm, and in this talk ∥ · ∥ is always the 2-norm, but
the 1-norm and and∞-norm have also been studied [TK15]. 10 / 38
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Anderson Acceleration (AA)
In what follows, we will takeβk = 1 for all k. Sinceα(k+1)

k = 1 −
∑k−1

j=k−mk
α
(k+1)
j , the

optimization subproblem is equivalent to the unconstrained problem

min
α∈Rmk

∥∥∥∥∥∥wk+1 −
k−1∑

j=k−mk

αj(wk+1 − wj+1)

∥∥∥∥∥∥ (4)

Similarly, the Anderson iterate xk+1 can be written as

xAA
k+1 = xk + wk+1 −

k−1∑
j=k−mk

α
(k+1)
j [xk + wk+1 − (xj + wj+1)]

= g(xk)−
k−1∑

j=k−mk

α
(k+1)
j [g(xk)− g(xj)] (5)

Equation (5) is one form of the Anderson update seen in the literature.
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Anderson Acceleration (AA)
Another common form is obtained from (5) by the following.

xAA
k+1 = g(xk)−

k−1∑
j=k−mk

α
(k+1)
j [g(xk)− g(xj)]

= g(xk)−
k−1∑

j=k−mk

α
(k+1)
j

k∑
n=j+1

[g(xn)− g(xn−1)]

= g(xk)−
k∑

n=k−mk+1

γ
(k+1)
n [g(xn)− g(xn−1)], (6)

where γ(k+1)
n =

∑n−1
j=k−mk

α
(k+1)
j . Equation (6) is equivalent to a third form seen in the

literature, but it is typically written in terms of the residual. This is shown in the next slide.
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Anderson Acceleration (AA)
Using wk+1 = g(xk)− xk, (6) becomes

xk+1 = xk + wk+1 −
k∑

n=k−mk+1

γ
(k+1)
n [xn − xn−1 + wn+1 − wn] .

Define the n × mk matrices

Ek =
(
(xk − xk−1) · · · (xk−mk+1 − xk−mk)

)
Fk =

(
(wk+1 − wk) · · · (wk−mk+2 − wk−mk+1)

)
,

and γ(k+1) =
(
γ
(k+1)
k , ..., γ

(k+1)
k−mk+1

)T
where γ(k+1) = argminγ∈Rmk∥wk+1 − Fkγ∥. Then the

(k + 1)st Anderson update may be written as

xAA
k+1 = xk + wk+1 − (Ek + Fk)γ

(k+1). (7)
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AA milestones
(1965) Introduced by D.G. Anderson.

(1980) The closely related method, DIIS or Pulay Mixing, is introduced by Peter Pulay in
Convergence acceleration of iterative sequences. The case of SCF iteration.

(2009) Fang and Saad prove that AA is a type of multisecant method in Two classes of multisecant
methods for nonlinear acceleration.

(2011) Walker and Ni show that, for linear problems, AA is equivalent to the well-known
GMRES method in Anderson Acceleration for Fixed-Point Iterations.

(2015) Toth and Kelley provide first convergence proof of Anderson for contractive operators.

(2020) Evans, Pollock, Rebholz, and Xiao prove that Anderson improves rate of convergence for
linearly convergent fixed-point iterations.

Open prior to 2023: why is Anderson effective when applied to singular problems?
Convergence? Answers in next section.
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AA as a quasi-Newton method

Fang and Saad’s 2009 paper [FS08] demonstrates the xAA
k+1 can be viewed as a Type-II2 Broyden

(multisecant) method. That is,

xAA
k+1 = xk − Gkwk+1, (8)

where GkFk = Ek. Noting that γ(k+1) = (FT
k Fk)

−1FT
k wk+1 in (6), it follows that

Gk = −I + (Ek + Fk)(FT
k Fk)

−1FT
k , (9)

and Gk minimizes ∥G + I∥F over all n × mk matrices for which GFk = Ek [FS08, Gri12]. Here
∥ · ∥F is the Frobenius norm.

2Type-II multisecant methods approximate the inverse Jacobian directly.
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AA as nonlinear GMRES

Walker and Ni’s 2011 paper [WN11] showed that if AA is applied to an affine function
g(x) = Ax + b with mk = k for all k, then it is equivalent to GMRES in the sense that

k∑
i=0

α
(k+1)
k xAA

i = xGMRES
k , and (10)

xAA
k+1 = g(xGMRES

k ) (11)

Here, theα(k+1)
i terms are those obtained from the optimization step of the AA algorithm.

Thus, GMRES and AA are equivalent in the sense that the GMRES iterates are easily obtained
from the AA iterates and vice versa.
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AA theory for nonsingular problems
▶ If ∥g(x)− g(y)∥ ≤ κg∥x − y∥, ∥g′(x)z − g′(y)z∥ ≤ κ̂g∥x − y∥∥z∥,

∥wk+1 − wk∥ ≥ σ∥xk − xk−1∥, and m = 1, then the residual wk+1 satisfies [PR21,
Theorem 4.3]

∥wk+1∥ ≤ θkκg∥wk∥+ h.o.t (12)

▶ θk := ∥wk+1 − Fkγ
(k+1)∥/∥wk+1∥ ≤ 1 is the optimization gain.

▶ AA works because θk ≤ 1, and is frequently much less than one in practice. Thus AA
decreasing the Lipschitz constantκg.

▶ To control the condition number of FT
k Fk, one may use filtering [PR23].

▶ ∥wk+1 − wk∥ ≥ σ∥xk − xk−1∥ holds if, for example, f ′(x∗) is nonsingular, and is essentially a
regularity condition on wk+1 = w(x) := −f ′(x)−1f (x). Such a condition makes sense given
that AA can be viewed as a quasi-Newton method applied to w(x).
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The singular case
Consider again the problem computing the solution x∗ to the nonlinear system of equations
f (x) = 0, and we remove the assumption that f ′(x∗) is nonsingular, then standard Newton
theory tells us that xNewt

k+1 = xk − f ′(xk)
−1f (xk)will converge linearly to x∗ from x0 in a starlike

domain about x0.

To be precise, if we let PN denote the projection onto the null space N of f ′(x∗), and PR the
projection onto the range R, then in the best case3 we have [Gri80, DKK83]

∥PR(xNewt
k+1 − x∗)∥ ≤ C1∥xNewt

k − x∗∥2 (13)

∥PN(xNewt
k+1 − x∗)∥ ≤ 1

2
∥PN(xNewt

k − x∗)∥+ C2∥PR(xNewt
k − x∗)∥+ C3∥xNewt

k − x∗∥2 (14)

Newton’s method is a linearly convergent fixed point iteration =⇒ Anderson should help.

Q: How does Anderson improve convergence for singular problems? Does it converge?
3f ′(x∗) is two regular along N and dim N = 1.
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Acceleration & Convergence for singular problems
1. (D.,Pollock, 2023) Acceleration is due to the optimization gain. Near N and x∗, we have

Newton-Anderson

∥PNek+1∥ ≤ κθk+1∥PNek∥, κ < 1

Newton

∥PNeNewtk+1 ∥ ≤ κ∥PNeNewtk ∥

2. (D.,Pollock, Rebholz, 2024) For x0 sufficiently close to N and x∗, and x1 = x0 + w1,
adaptive γ-safeguarded Newton-Anderson (γ NAA(̂r)) remains well-defined and
converges to x∗ with

∥PRek+1∥ ≤ c4 max{|1 − λk+1γk+1| ∥ek∥2, |λk+1γk+1| ∥ek−1∥2}
∥PNek+1∥ < κθλk+1∥PNek∥.
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Adaptive γ-Safeguarded Newton-Anderson

Algorithm Newton-Anderson(1)

1: Choose x0 ∈ Rn. Set w1 = −f ′(x0)−1f (x0),
and x1 = x0 + w1.

2: for k=1,2,... do
3: wk+1 ← −f ′(xk)

−1f (xk)
4: γk+1 ← (wk+1−wk)

T wk+1/∥wk+1−wk∥2
2

5: xk+1 ← xk + wk+1 − γk+1(xk − xk−1 +
wk+1 − wk)

6: end for

Algorithm Adaptive γ-Safeguarded Newton-
Anderson
1: Choose x0 ∈ Rn and r̂ ∈ (0, 1). Set w1 = −f ′(x0)

−1 f (x0) and
x1 = x0 + w1

2: for k=1,2,... do
3: wk+1 ← −f ′(xk)

−1 f (xk)

4: γk+1 ← (wk+1 − wk)
T wk+1/∥wk+1 − wk∥2

2
5: ηk+1 ← ∥wk+1∥/∥wk∥
6: rk+1 ← min{ηk+1, r̂}
7: βk+1 ← rk+1ηk+1
8: λa ← 1
9: if γk+1 = 0 or γk+1 ≥ 1 then
10: λa ← 0
11: else if |γk+1|/|1− γk+1| > βk+1 then

12: λa ←
βk+1

γk+1
(
βk+1 + sign(γk+1)

)
13: end if
14: xk+1 ← xk + wk+1−λaγk+1(xk − xk−1 + wk+1 − wk)

15: end for
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Adaptive γ-safeguarding

In our first paper on Newton-Anderson for singular problems [DP23], we used an earlier version
of γ-safeguarding that was not adaptive. A parameter r is set at the start of the solve and
remained fixed.

It was found that, when applying Newton-Anderson to with γ-safeguarding to nonsingular
problems, both it and standard Newton-Anderson underperformed compared to standard
Newton. Reducing r closer to zero improved this, but standard Newton was still best.

Moreover...
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Adaptive γ-safeguarding
It was recently shown by Rebholz and Xiao in [RX23] that Anderson reduces order of
convergence of superlinearly convergent fixed-point iterations:

order 7→ order + 1
2

(with depth m = 1).

So while Anderson is helpful in the preasymptotic regime, it is not ideal (locally!) when
problem is nonsingular.

Idea: develop an adaptive safeguarding scheme that will
1. preserve convergence results for singular problems; and
2. automatically detect nonsingular problems and respond by “turning off" Anderson to

recover local quadratic convergence; and
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Adaptive γ-safeguarding
In non-adaptive γ-safeguarding from D., Pollock, 2023 [DP23], we have one tunable parameter
r ∈ (0, 1) that we fix at the start of the solve.

r ≈ 0 =⇒ Newton-like step and r ≈ 1 =⇒ Newton-Anderson-like step

Adaptive γ-safeguarding: replace r with rk+1 that may change at each iteration. A satisfactory
choice of rk+1 should satisfy three criteria.

1. rk+1 ≈ 0 if ∥PNek∥/∥PNek−1∥ ≈ 0;
2. rk+1 ≈ 1 if ∥PNek∥/∥PNek−1∥ ≈ 1; and
3. lim

k→∞
rk+1 = 0 if F′(x∗) is nonsingular.

rk+1 =
∥wk+1∥
∥wk∥

meets all three criteria since
∥wk+1∥
∥wk∥

≈ ∥PNek∥
∥PNek−1∥

near N and x∗.

Take rk+1 = min{∥wk+1∥/∥wk∥, r̂} to preserve local convergence, where r̂ ∈ (0, 1).
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Adaptive γ-Safeguarded Newton-Anderson

Algorithm Newton-Anderson(1)

1: Choose x0 ∈ Rn. Set w1 = −f ′(x0)−1f (x0),
and x1 = x0 + w1.

2: for k=1,2,... do
3: wk+1 ← −f ′(xk)

−1f (xk)
4: γk+1 ← (wk+1−wk)

T wk+1/∥wk+1−wk∥2
2

5: xk+1 ← xk + wk+1 − γk+1(xk − xk−1 +
wk+1 − wk)

6: end for

Algorithm Adaptive γ-Safeguarded Newton-
Anderson
1: Choose x0 ∈ Rn and r̂ ∈ (0, 1). Set w1 = −f ′(x0)

−1 f (x0) and
x1 = x0 + w1

2: for k=1,2,... do
3: wk+1 ← −f ′(xk)

−1 f (xk)

4: γk+1 ← (wk+1 − wk)
T wk+1/∥wk+1 − wk∥2

2
5: ηk+1 ← ∥wk+1∥/∥wk∥
6: rk+1 ← min{ηk+1, r̂}
7: βk+1 ← rk+1ηk+1
8: λa ← 1
9: if γk+1 = 0 or γk+1 ≥ 1 then
10: λa ← 0
11: else if |γk+1|/|1− γk+1| > βk+1 then

12: λa ←
βk+1

γk+1
(
βk+1 + sign(γk+1)

)
13: end if
14: xk+1 ← xk + wk+1−λaγk+1(xk − xk−1 + wk+1 − wk)

15: end for
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γ-Safeguarding’s effect on an AA step

At step k in adaptive γ-safeguarding, the parameter rk+1 = min{∥wk+1∥/∥wk∥, r̂}, where
r̂ ∈ (0, 1) is set at the start of the solve.

Now rk+1, not the fixed parameter r from non-adaptive safeguarding, determines how strictly
the AA iterates are scaled to a Newton iterate should the condition in line 11 be met. In
particular, when ∥wk+1∥/∥wk∥ < r̂, rk+1 = ∥wk+1∥/∥wk∥. Therefore,
▶ if the residual is decreased significantly from the previous step, we take a more

Newton-like step.
▶ Otherwise, seeking acceleration, we take an AA-like step.

Remark: These conditions superficially resemble those of methods such as pseudo-transient
continuation [KK98] and the Eisentat-Walker choice 2 for the forcing term in inexact Newton
methods [EW95].

25 / 38



Introduction Newton’s Method Anderson Acceleration (AA) Adaptive Safeguarding Numerical Examples Conclusion

γ-Safeguarding’s effect on an AA step
We can be a bit more precise. Lettingλa

k+1 be the quantity returned in line 12 of the adaptive
safeguarding algorithm, we have [DPR24, Lemma 3.2]

|λa
k+1γk+1| ≤

rk+1∥wk+1∥/∥wk∥
1 − ∥wk+1∥/∥wk∥

(15)

whenλa
k+1 = 1 (the condition in line 11 was not met), and

|λa
k+1γk+1| ≤

rk+1∥wk+1∥/∥wk∥
1 + sign(γk+1)∥wk+1∥/∥wk∥

(16)

whenλa
k+1 < 1. Recall that the xNA

k+1 step with γ-safeguarding may be written as

xNA
k+1 = xNewt

k+1 − λa
k+1γk+1

(
xNewt

k+1 − xNewt
k

)
. (17)
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γ-Safeguarding’s effect on an AA step

From equations (15), (16), and (17), we can obtain the general bound

∥xNA
k+1 − xNewt

k+1 ∥ ≤ C
(

rk+1∥wk+1∥/∥wk∥
1 − ∥wk+1∥/∥wk∥

)
max{∥eNewt

k+1 ∥, ∥eNewt
k ∥} (18)

ifλa
k+1 = 1 and

∥xNA
k+1 − xNewt

k+1 ∥ ≤ C
(

rk+1∥wk+1∥/∥wk∥
1 + sign(γk+1)∥wk+1∥/∥wk∥

)
max{∥eNewt

k+1 ∥, ∥eNewt
k ∥} (19)

ifλa
k+1 < 1. Here C is a constant that depends only on f .
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Asymptotic behavior in nonsingular case

If f ′(x∗) is nonsingular, then letting ek+1 := xk+1 − x∗ denote the error at the (k + 1)st step of
adaptive γ-safeguarded NA, we have (Corollary 3.4, D., Pollock, Rebholz, 2024)

∥ek+1∥ ≤
(

C1

1 − r̂2 + C2

)
∥ek∥2. (20)

when ∥wk+1∥/∥wk∥ < r̂ and ∥ek∥ < ∥ek−1∥.
▶ We thus have a flexible algorithm with a tunable parameter r̂ ∈ (0, 1) that accelerates

convergence for singular problems, and recovers quadratic convergence for nonsingular
problems.
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Numerics

In the following slides, we apply Newton (Newt), Newton-Anderson (NA), and
Newton-Anderson with adaptive γ-safeguarding and parameter r̂ ( γNAA(̂r) ) to two
parameter-dependent incompressible flow problems. The goal is to demonstrate two general
strategies one can use when implementing γ-safeguarding, and also show that

1. Newton-Anderson with adaptive γ-safeguarding performs competitively compared to
standard Newton and Newton-Anderson near bifrucation points, which are necessarily
singular points;

2. adaptive γ-safeguarding automatically detects nonsingular problems and recovers
quadratic convergence; and

3. that with the right choice of r̂, Newton-Anderson with adaptive γ-safeguarding can
converge when both Newton-Anderson and Newton fail to converge.
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Two general strategies

1. Asymptotic safeguarding
▶ Adaptive γ-safeguarding is not applied until the residual is less than some tolerance τ . In

[DPR24], we choose τ = 10−1.
2. Preasymptotic safeguarding

▶ Adaptive γ-safeguarding is active during the entire solve.
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Incompressible Channel Flow−µ∆u + u · ∇u +∇p = 0
∇ · u = 0

u = uin, Γin

u = 0, Γwall

−pn + (µ∇u)n = 0, Γout

(21)

Figure: Stable Solutions to channel flow problem for differentµ ∈ (0.9, 1).

P2 − P1 Taylor-Hood elements. 12, 734 velocity dof and 1,672 pressure dof. 31 / 38
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Asymptotic safeguarding: incompressible channel flow

Figure: Residual history comparing Newton, Newton-Anderson, and Newton-Anderson with adaptive
γ-safeguarding applied once ∥wk+1∥ < 10−1.
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Preasymptotic safeguarding: incompressible channel flow

Figure: Left: Residual history for Newton, Newton-Anderson, and γ-safeguarded Newton-Anderson
applied to an incompressible Navier-Stokes equations. Right: Residual history starting from different
starting point from that of the figure on the left.
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Rayleigh-Bénard convection


−µ∆u + u · ∇u +∇p − Ri Tey = 0

∇ · u = 0
−κ∆T + u · ∇T = 0

T = 1, x ∈ Γ1 := {1} × (0, 1),
T = 0, x ∈ Γ2 := {0} × (0, 1),

∇T · n = 0, x ∈ Γ3 := (0, 1)× {0, 1},
u = 0, x ∈ ∂Ω = Γ1 ∪ Γ2 ∪ Γ3.

(22)

Figure: Velocity streamlines showing transition from one eddy to two eddies.
P2 − P0

1 Scott-Vogelius elements. 7,258 velocity dof and 5,346 pressure dof. 34 / 38
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Preasymptotic safeguarding: Rayleigh-Bénard Convection

Figure: Sample results for preasymptotic safeguarding. Left: Residual history. Right: rk history.

Right plot shows γ NAA(̂r) is working as intended since rk := min
{
∥wk+1∥
∥wk∥

, r̂
}
→ 0.
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Preasymptotic safeguarding: Rayleigh-Bénard Convection

Figure: Sample results for preasymptotic safeguarding. Left: Residual history for Ri= 3.1. Right:
Residual history for Ri= 3.2.

γ NAA(̂r) performs competitively with Newton-Anderson, and can recover convergence when
both Newton and Newton-Anderson diverge, but is still be sensitive to r̂.
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Summary of Results

1. Acceleration and Convergence:4

▶ Anderson Acceleration improves rate of convergence of Newton’s method in singular case;
and

▶ γ-safeguarded Newton-Anderson converges locally.
2. Adaptive Safeguarding:5

▶ adaptive γ-safeguarded Newton-Anderson effectively solves nonlinear PDEs near singular
points; and

▶ automatically detects nonsingular problems and recovers quadratic convergence.

Book on the way: Sara Pollock and Leo Rebholz, Anderson Acceleration for Numerical PDEs, in
production now with SIAM.

4D., S. Pollock, Newton-Anderson at Singular Points, IJNAM, 2023
5D., S. Pollock, L. G. Rebholz, Analysis of an Adaptive Safeguarded Newton-Anderson Algorithm with

Applications to Fluid Problems, ACSE, 2024
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Ongoing Work

▶ Active projects
1. Extending results to algorithmic depth m > 1 and dimN > 1.
2. Developing theory for Anderson applied to perturbed Newton methods.
3. Is γ-safeguarding useful as a general fixed point iteration safeguard?

▶ Semi-active or future projects
1. Applications of γ-safeguarded Newton-Anderson to more complex problems. Is it robust

and practical?
2. Is there a way to tweak parameter r̂ in the preasymptotic regime that leads to some kind of

global convergence result?
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Thank you!
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