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Introduction

We’re interested in efficiently solving

F(x) = 0
where F : Rn → Rn is nonlinear, C3, and F(x∗) = 0 =⇒ F′(x∗) is singular.

Notation: PR and PN denote orthogonal projections onto the range and null space of F′(x∗),
ek := xk − x∗, and ∥ · ∥ = ∥ · ∥2.
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Newton’s Method

xk+1 = xk − F′(xk)
−1F(xk) (1)

Local quadratic convergence when F′(x∗) is nonsingular [Ort].

Local linear convergence when F′(x∗) is singular [DKK83].

x∗
N

x∗

Figure: Left: Domain of convergence for Newton’s method when F′(x∗) is nonsingular. Right: Example
domain of convergence when F′(x∗) is singular, and N = null F′(x∗).

3 / 18



Improving Newton’s method for singular problems
Richardson extrapolation and overrelaxtion (Griewank, SIAM Review, 1985 [Gri85]) can achieve
arbitrarily fast linear convergence and superlinear convergence respectively if the order of the
root is know or approximately known (bordering is also useful).

An alternative to Newton’s method for singular problems is the Levenberg-Marquardt (LM)
method, which achieves local quadratic convergence [KYF04] if the local error bound holds:

dist
(

xk, F−1(0)
)
≤ C∥F(xk)∥.

In the absence of the local error bound, one may assume F is 2-regular at x∗ along a direction
v ∈ N, i.e., the linear map

Φ(·) := F′(x∗)(·) + PNF′′(x∗)(v, ·)

is nonsingular, in which case LM converges linearly in a starlike domain around x∗.
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Anderson Acceleration (AA)
(1965) First introduced by D.G. Anderson.

(1980) The closely related method, DIIS or Pulay Mixing, is introduced by Peter Pulay in
Convergence acceleration of iterative sequences. The case of SCF iteration.

(2009) Fang and Saad prove that AA is a type of multisecant method in Two classes of multisecant
methods for nonlinear acceleration.

(2011) Walker and Ni show that, for linear problems, AA is equivalent to the well-known
GMRES method in Anderson Acceleration for Fixed-Point Iterations.

(2015) Toth and Kelley provide first convergence proof of Anderson for contractive operators.

(2020) Evans, Pollock, Rebholz, and Xiao prove that Anderson improves rate of convergence for
linearly convergent fixed-point iterations.

Open prior to 2023: why is Anderson effective when applied to singular problems?
Convergence?
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Why Anderson?

Anderson Acceleration can achieve superlinear convergence when applied to linearly
convergent fixed-point iterations [PR21], e.g., Newton’s method applied to a singular problem.

Can enlarge domain of convergence (observed, for example, by Pollock and Schwartz in [PS20])

No knowledge of the order of the root required; it’s computationally cheap; and, for singular
problems, is theoretically supported under the assumption of 2-regularity.

It has been shown by Izmailov, Kurennoy, and Solodov in [IKS18] that

2-regular =⇒ no local error bound

Thus Anderson can recover superlinear convergence when LM cannot.
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Anderson Acceleration
Suppose we seek a fixed point of g, and we have computed m + 1 iterates {xk, xk−1, ..., xk−m}
where xi = g(xi−1). Let wk+1 = g(xk)− xk.

Ek =
(
(xk − xk−1) · · · (xk−m+1 − xk−m)

)
, Fk =

(
(wk+1−wk) · · · (wk−m+2−wk−m+1)

)
,

and γk+1 = argminγ∈Rm ∥wk+1 − Fkγ∥2. Then

xAA
k+1 = xk + βwk+1 − (Ek + βFk)γk+1. (2)

Hereβ ∈ (0, 1] is a damping parameter. The results in this talk apply toβ = 1 and m = 1.

We define the optimization gain [PR21] as

θk+1 :=
∥wk+1 − Fkγk+1∥

∥wk+1∥
. (3)
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Adaptive γ-Safeguarded Newton-Anderson

Algorithm Newton-Anderson(1)

1: Choose x0 ∈ Rn. Set w1 = −f ′(x0)−1f (x0),
and x1 = x0 + w1.

2: for k=1,2,... do
3: wk+1 ← −f ′(xk)

−1f (xk)
4: γk+1 ← (wk+1−wk)

T wk+1/∥wk+1−wk∥2
2

5: xk+1 ← xk + wk+1 − γk+1(xk − xk−1 +
wk+1 − wk)

6: end for

Algorithm Adaptive γ-Safeguarded Newton-
Anderson
1: Choose x0 ∈ Rn and r̂ ∈ (0, 1). Set w1 = −f ′(x0)

−1 f (x0) and
x1 = x0 + w1

2: for k=1,2,... do
3: wk+1 ← −f ′(xk)

−1 f (xk)

4: γk+1 ← (wk+1 − wk)
T wk+1/∥wk+1 − wk∥2

2
5: ηk+1 ← ∥wk+1∥/∥wk∥
6: rk+1 ← min{ηk+1, r̂}
7: βk+1 ← rk+1ηk+1
8: λa ← 1
9: if γk+1 = 0 or γk+1 ≥ 1 then
10: λa ← 0
11: else if |γk+1|/|1− γk+1| > βk+1 then

12: λa ←
βk+1

γk+1
(
βk+1 + sign(γk+1)

)
13: end if
14: xk+1 ← xk + wk+1−λaγk+1(xk − xk−1 + wk+1 − wk)

15: end for
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Acceleration & Convergence

1. (D.,Pollock, 2023) Acceleration is due to the optimization gain. Near N and x∗, we have

Newton-Anderson

∥PNek+1∥ ≤ κθk+1∥PNek∥, κ < 1

Newton

∥PNeNewtk+1 ∥ ≤ κ∥PNeNewtk ∥

2. (D.,Pollock, Rebholz, 2024) For x0 sufficiently close to N and x∗, and x1 = x0 + w1,
adaptive γ-safeguarded Newton-Anderson (γ NAA(̂r)) remains well-defined and
converges to x∗ with

∥PRek+1∥ ≤ c4 max{|1 − λk+1γk+1| ∥ek∥2, |λk+1γk+1| ∥ek−1∥2}
∥PNek+1∥ < κθλk+1∥PNek∥.
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Anderson slows superlinear convergence
Anderson improves the rate of convergence of linearly convergent fixed-point iterations.

However, it was recently shown by Rebholz and Xiao in [RX23] that Anderson reduces order of
convergence of superlinearly convergent fixed-point iterations:

order 7→ order + 1
2

(with depth m = 1).

So while Anderson is helpful in the preasymptotic regime, it is not ideal (locally!) when
problem is nonsingular.

Goal: develop an adaptive safeguarding scheme that will
1. automatically detect nonsingular problems and respond by “turning off" Anderson to

recover local quadratic convergence; and
2. preserve convergence results for singular problems.
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Adaptive γ-safeguarding
In non-adaptive γ-safeguarding from D., Pollock, 2023 [DP23], we have one tunable parameter
r ∈ (0, 1) that we fix at the start of the solve.

r ≈ 0 =⇒ Newton-like step and r ≈ 1 =⇒ Newton-Anderson-like step

Adaptive γ-safeguarding: replace r with rk+1 that may change at each iteration. A satisfactory
choice of rk+1 should satisfy three criteria.

1. rk+1 ≈ 0 if ∥PNek∥/∥PNek−1∥ ≈ 0;
2. rk+1 ≈ 1 if ∥PNek∥/∥PNek−1∥ ≈ 1; and
3. lim

k→∞
rk+1 = 0 if F′(x∗) is nonsingular.

rk+1 =
∥wk+1∥
∥wk∥

meets all three criteria since
∥wk+1∥
∥wk∥

≈ ∥PNek∥
∥PNek−1∥

near N and x∗.

Take rk+1 = min{∥wk+1∥/∥wk∥, r̂} to preserve local convergence, where r̂ ∈ (0, 1).
11 / 18



Asymptotic Behavior of γNAA(̂r): Nonsingular problems

If F′(x∗) is nonsingular, then letting ek+1 := xk+1 − x∗ denote the error at the (k + 1)st
γ NAA(̂r) step, we have (Corollary 3.4, D., Pollock, Rebholz, 2024)

∥ek+1∥ ≤
(

C1

1 − r̂2 + C2

)
∥ek∥2. (4)

when ∥wk+1∥/∥wk∥ < r̂ and ∥ek∥ < ∥ek−1∥.
▶ We now have a flexible algorithm, γNAA(̂r), with a tunable parameter r̂ ∈ (0, 1) that

accelerates convergence for singular problems, and recovers quadratic convergence for
nonsingular problems.
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Example from Incompressible Channel Flow−µ∆u + u · ∇u +∇p = 0
∇ · u = 0

u = uin, Γin

u = 0, Γwall

−pn + (µ∇u)n = 0, Γout

(5)

Figure: Stable Solutions to channel flow problem for differentµ.

P2 − P1 Taylor-Hood elements. 12, 734 velocity dof and 1,672 pressure dof.
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Example from Incompressible Channel Flow

Figure: Residual history for Newton, Newton-Anderson, and γ-safeguarded Newton-Anderson applied
to an incompressible Navier-Stokes equation. 14 / 18



Rayleigh-Bénard Convection
−µ∆u + u · ∇u +∇p − Ri Tey = 0

∇ · u = 0
−κ∆T + u · ∇T = 0

T = 1, x ∈ Γ1 := {1} × (0, 1),
T = 0, x ∈ Γ2 := {0} × (0, 1),

∇T · n = 0, x ∈ Γ3 := (0, 1)× {0, 1},
u = 0, x ∈ ∂Ω = Γ1 ∪ Γ2 ∪ Γ3.

(6)

Figure: Velocity streamlines showing transition from one eddy to two eddies.

P2 − P0
1 Scott-Vogelius elements. 7,258 velocity dof and 5,346 pressure dof. 15 / 18



Numerical Results: Rayleigh-Bénard Convection

Figure: Sample results for preasymptotic safeguarding. Left: Residual history. Right: rk history.

Right plot shows γ NAA(̂r) is working as intended since rk := min
{
∥wk+1∥
∥wk∥

, r̂
}
→ 0.
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Numerical Results: Rayleigh-Bénard Convection

Figure: Sample results for preasymptotic safeguarding. Left: Residual history for Ri= 3.1. Right:
Residual history for Ri= 3.2.

γ NAA(̂r) performs competitively with Newton-Anderson, and can recover convergence when
both Newton and Newton-Anderson diverge, but is still be sensitive to r̂.
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Summary of Results

1. Acceleration and Convergence:1

▶ Anderson Acceleration improves rate of convergence of Newton’s method in singular case;
and

▶ γ-safeguarded Newton-Anderson converges locally.
2. Adaptive Safeguarding:2

▶ adaptive γ-safeguarded Newton-Anderson effectively solves nonlinear PDEs near singular
points; and

▶ automatically detects nonsingular problems and recovers quadratic convergence.

1D., S. Pollock, Newton-Anderson at Singular Points, IJNAM, 2023
2D., S. Pollock, L. G. Rebholz, Analysis of an Adaptive Safeguarded Newton-Anderson Algorithm with

Applications to Fluid Problems, ACSE, 2024
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Thank you!

Figure: D., Pollock, IJNAM, 2023 Figure: D., Pollock, Rebholz, ACSE, 2024
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